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ABSTRACT

This paper proposed artificialneural networks to find the solution of linear two-dimensional Fredholm integral
equation. The three-layer network which has been used successfully to solve this problem.The proposed neural
network can get a real input vector and calculates its corresponding output vector. In this method, a back
propagation is used to train the network. Where the Levenberg-Marquardt algorithm used for adjusting the
connection weights.The method is illustrated by several examples with computer simulations.
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I. INTRODUCTION
Since many mathematical formulations of physical phenomena containintegral equations and these equations are
very useful for solving manyproblems in several applied fields like mathematical physics and engineering, therefore
various approaches for solving these problems havebeen proposed. First time, Taylor expansion approach was
presentedfor solution of integral equations by Kanwal and Liu in [1] and then hasbeen extended in [2], [3-6]. Also
variational iteration method[7]and Adomian decomposition method [8] are effective and convenientfor solving
integral equations. The homotopy analysis method (HAM) was proposed by Liao [9- 12] and then has been applied
in [8], [13, 14].Hadizadeh and Asgary [15]using the bivariate Chebyshev collocation method solvedthe linear
Volterra–Fredholm integral equations of thesecond kind. Alipanah and Esmaeili [16] approximated thesolution of
the two-dimensional Fredholm integral equationusing Gaussian radial basis function based on Legendre–Gauss–
Lobatto nodes and weights. Two-dimensionalorthogonal triangular functions are used in [17] as a newset of basis
functions to approximate solutions of nonlineartwo-dimensional integral equations. Babolian et al. [18]applied two-
dimensional rationalized Haar functions forfinding the numerical solution of nonlinear second kindtwo-dimensional
integral equations. They reduced thepresent problem to solve a nonlinear system of algebraicequations using
bivariate collocation method and Newton–Cotes nodes. Moreover, some different valid methods forsolving these
kind of equations have been developed.

This paper focuses on constructing a new algorithm by the use of neural networks to reach anapproximate solution
of the linear two-dimensional Fredholmintegral equation. For this purpose, first unknown twovariablefunction in the
problem is replaced by a three-layerneural network. This architecture ofArtificialneural networks (ANN) can
calculate the output corresponding toinput vector. Now the error function to be minimized is definedon the set points.
Consequently, the suggested ANNusing a training algorithm that is based onLevenberg-Marquardt algorithmis used
to adjust parameters (the weights and biases)to any desired degree of accuracy.

II. PRELIMINARIES
In this section we will introduce the basic definitions andintroductory concepts in integral equations. In addition
thebasic principles of ANNapproach are presented and reviewed for solving linearsecond kind two-dimensional
integral equations (2D-IEs).

2.1. Integral equations
Integral equations appear in many scientific and engineeringapplications, especially when initial value problems
forboundary value problems are converted to integral equations.As stated before, we will introduce the definition of
linear two-dimensional integral equations ofthe second kind.
Definition 2.2 [11]
The linear two-dimensional Fredholmintegral equation (2D-FIE) of the second kind is presentedby the form:
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Where λ is a constant parameter, the kernel k and f are givenanalytic functions on L2([a, b]×[c, d]). The two-
variableunknown function F that must be determined appearsinside and outside the integral signs. This is a second
kind integral equation.
It is important topoint out that if the unknown function appears only insidethe integral signs, the resulting equation is
of first kind.

Notice that, if the function f(x, y) in the present integralequations is identically zero, the equation is called
homogeneous.Otherwise it is called inhomogeneous. These threeconcepts play a major role in the structure of the
solution.

III. ARTIFICIAL NEURAL NETWORKS
Artificial neural networks (ANNs) can be considered assimplified computational structures that are inspired
byobserved process in natural networks of biological neuronsin the brain. They are nonlinear mapping
architecturesbased on the function of the human brain, therefore can beconsidered as powerful tools for modeling,
especially whenthe underlying data relationship is unknown. In other words, in contrast to conventionalmethods,
which are used to perform specific task,most ANNs are more versatile. This feature raisesa very appealing
computational model which can beapplied to solve variety of problems [19].

IV. ARCHITECT OF THE STRUCTURE NETWORK
In this section we will explain how this approach can be used to find the approximate solution of the linear two-
dimensional Fredholm integral equation (2D-FIE) of the second kind(equation (1) ).We suggest three layer ANN:
input layer consist two input nodes, hidden layer consist nine hidden nodeswith tansig. transfer function and output
layer consist one output node with linear transfer function, see Figure (1). The suggested networkis doing as the
following:
Input nodes:
The input nodes make no change in their inputs, so:

O1= x
O2= y

Hidden nodes:
Input into a node in hidden layer is a weighted sum ofoutputs from nodes connected to it. Each unit takes its netinput
and applies antransfer function to it. The input/output relation is normally given as follows:

Op = g( net (p) );

where net(p) describes the result of the net outputs oiimpacting on unit p. Also, wpiare weights connectingneuron i to
neuron p and bp is a bias for neuron p. Bias termis baseline input to a node in absence of any other inputs.
Output node:
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Figure 1: Architect of suggested ANN

V. TRAINING SUGGESTED NETWORK
The suggested ANN is trained by backpropagationalgorithm that is based on supervised procedure.In other words,
the network is trained using asupervised training algorithm which uses the training datato adjust the network weights
and biases. Now let wp,q ,wpand bp (for p = 1, . . ., N; q = 1, 2 ( are initialized at smallrandom values for input signals.
For parameter wp,qadjustment rule can be written as follows:

Where r is the number of adjustments, η is the learning rate. Similarly thisadjustment rule can be written for other
weight parameters.

Training algorithm
Step 1: Let> 0, and Emax> 0 are chosen. Then crisp quantitieswp,q, wp, and bp (for p = 1, ...,N; q= 1,2) are
initialized at random values.

Step 2: Let r := 0 where r is the number of iterations of the training algorithm. Then the running error E is set to 0.
Step 3: Let r := r + 1. Then,

i) Forward calculation: Calculate the output vector uN(xi, yj) by presenting the input vectors w, xi, and yj.
ii) Back-propagation: Adjust crisp parameter wp,q, wp and bpusing the error function
Step 4: Cumulative cycle error is computed by adding the present error to E.
Step 5: The training cycle is completed. For E <Emax terminate the training session. If E >Emax then E is set to 0
and we initiate a new training cycle by going back to Step 3.

VI. EXAMPLE
This section contain example of linear two-dimensional Fredholm integral equations of second kind. In this example,
we illustrate the use of suggested ANN to approximate the solutions of the given integral equation. Where the
computed values of the approximatesolution are calculated over a number of epoch and the error function is plotted.
Also, to show the efficiency of thepresent method for our problem, results will be comparedwith the exact solution.
In the following simulations, we use the specifications as follows: Learning constant = 0.1, epoch = 10000, and
stopping conditions Emax<0.0001.
Consider the linear 2D-FIE:

With the exact solution F(x, y) = x.cosy.
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The suggest network trained using a grid of ten equidistant points in [0, 1]. Figure (1) display the neural solution.
Figure (2) illustrate the accuracy of solution. Table (1) gave the exact and neural solution with Levenberg –
Marquardt training algorithms (trainlm), Table (2) gave the performance of the train for epoch and time, Table (3)
gave the initial weight and bias of the designer network. Also, to show the efficiency of the present method for our
problem, results will be compared with the other method such shifted Legendre collocationmethod(ShLCM) and
given in Table (1).

Figure 1:ANN solution for example

Figure 2: Accuracy of solution for example
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Table 1: A comparison between Exact, ANN andShLCM solution of example

Table 2: The performance of the train for epoch and time

Table 3: Initial weight and bias of the network for training algorithm

VII. CONCLUSIONS
In this paper, an artificial neural network has beenproposed toapproximate solution of a linear two-dimensional
Fredholm integral equation. So, a three layer ANN has been proposed. Thisnetwork is able of estimating
approximate solution ofassumed equation using the Levenberg – Marquardt training algorithm. The analyzed
example illustrated the abilityand reliability of the present approach. The comparison between ANN and exact
solution admit aremarkable accuracy. Extensions to the case of more generalof integral equations are left for future
studies.
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